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Recently my interest has been captured by a new arena and expression for the contention that 

“maps are data”—spatialSTEM (or sSTEM for short)—as a means for redirecting education in 

general, and GIS education in particular.  I suspect you have heard of STEM (Science, 

Technology, Engineering and Mathematics) and the educational crisis that puts U.S. students 

well behind many other nations in these quantitatively-based disciplines.   

 

While Googling around the globe makes for great homework in cultural geography, it doesn’t 

advance quantitative proficiency, nor does it stimulate the spatial reasoning skills needed for 

problem solving.  Lots of folks from Freed Zakaria to Bill Gates to President Obama are looking 

for ways that we can recapture our leadership in the quantitative fields.  That’s the premise of 

spatialSTEM– that “maps are numbers first, pictures later” and we do mathematical things to 

mapped data for insight and better understanding of spatial patterns and relationships within 

decision-making contexts.   

 

This contention suggests that there is a map-ematics that can be employed to solve problems that 

go beyond mapping, geo-query, visualization and GPS navigation.  This column’s discussion 

about the quantitative nature of maps is the first part of a three-part series that sets the stage to 

fully develop this thesis— that grid-based Spatial Analysis Operations are extensions of 

traditional mathematics (Part 2 investigating map math, algebra, calculus, plane and solid 

geometry, etc.) and that grid-based Spatial Statistics Operations are extensions of traditional 

statistics (Part 3 looking at map descriptive statistics, normalization, comparison, classification, 

surface modeling, predictive statistics, etc.).   
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Figure 1. Conceptual overview of the SpatialSTEM framework. 

 

Figure 1 outlines the important components of map analysis and modeling within a mathematical 

structure that has been in play since the 1980s (see author’s note).  Of the three disciplines 

forming Geotechnology (Remote Sensing, Geographic Information Systems and Global 

Positioning System), GIS is at the heart of converting mapped data into spatial information.  

There are two primary approaches used in generating this information—Mapping/Geo-query and 

Map Analysis/Modeling. 

 

The major difference between the two approaches lies in the structuring of mapped data and their 

intended use.  Mapping and geo-query utilizes a data structure akin to manual mapping in which 

discrete spatial objects (points, lines and polygons) form a collection of independent, irregular 

features to characterize geographic space.  For example, a Water map might contain categories of 

Spring (points), Stream (lines) and Lake (polygons) with the features scattered throughout a 

landscape.   

 

Map analysis and modeling procedures, on the other hand, operate on continuous map variables 

(termed map surfaces) composed of thousands upon thousands of map values stored in geo-

registered matrices.  Within this context, a Water map no longer contains separate and distinct 

features but is a collection of adjoining grid cells with a map value indicating the characteristic at 

each location (e.g., Spring=1,  Stream= 2 and Lake= 3).   

 

 
 

Figure 2. Basic data structure for Vector and Raster map types. 
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Figure 2 illustrates two broad types of digital maps, formally termed Vector for storing discrete 

spatial objects and Raster for storing continuous map surfaces.  In vector format, spatial data is 

stored as two linked data tables.  A “spatial table” contains all of the X,Y coordinates defining a 

set of spatial objects that are grouped by object identification numbers.  For example, the 

location of the Forest polygon identified on the left side of the figure is stored as ID#32 followed 

by an ordered series of X,Y coordinate pairs delineating its border (connect-the-dots).   

 

In a similar manner, the ID#s and X,Y coordinates defining the other cover type polygons are 

sequentially listed in the table.  The ID#s link the spatial table (Where) to a corresponding 

“attribute table” (What) containing information about each spatial object as a separate record.  

For example, polygon ID#31 is characterized as a mature 60 year old Ponderosa Pine (PP) Forest 

stand.  

 

The right side of figure 2 depicts raster storage of the same cover type information.  Each grid 

space is assigned a number corresponding to the dominant cover type present— the “cell 

position” in the matrix determines the location (Where) and the “cell value” determines the 

characteristic/condition (What).  It is important to note that the raster representation stores 

information about the interior of polygons and “pre-conditions geographic space” for analysis by 

applying a consistent grid configuration to each grid map.  Since each map’s underlying data 

structure is the same, the computer simply “hits disk” to get information and does not have to 

calculate whether irregular sets of points, lines or polygons on different maps intersect.    

 

 
 

Figure 3. Organizational considerations and terminology for grid-based mapped data.  
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Figure 3 depicts the fundamental concepts supporting raster data.  As a comparison between 

vector and raster data structures consider how the two approaches represent an Elevation surface.  

In vector, contour lines are used to identify lines of constant elevation and contour interval 

polygons are used to identify specified ranges of elevation.  While contour lines are exacting, 

they fail to describe the intervening surface configuration.   

 

Contour intervals describe the interiors but overly generalize the actual “ups and downs” of the 

terrain into broad ranges that form an unrealistic stair-step configuration (center-left portion of 

figure 3).  As depicted in the figure, rock climbers would need to summit each of the contour 

interval “200-foot cliffs” rising from presumed flat mesas.  Similarly, surface water flow 

presumably would cascade like waterfalls from each contour interval “lake” like a Spanish multi-

tiered fountain.   

 

The upshot is that within a mathematical context, vector maps are ineffective representations of 

real-world gradients and actual movements and flows over these surfaces— while contour 

line/interval maps have formed colorful and comfortable visualizations for generations, the data 

structure is too limited for modern map analysis and modeling.   

 

The remainder of figure 3 depicts the basic Raster/Grid organizational structure.  Each grid map 

is termed a Map Layer and a set of geo-registered layers constitutes a Map Stack.  All of the map 

layers in a project conform to a common Analysis Frame with a fixed number of rows and 

columns at a specified cell size that can be positioned anywhere in geographic space.  As in the 

case of the Elevation surface in the lower-left portion of figure 3, a continuous gradient is formed 

with subtle elevation differences that allow hikers to step from cell to cell while considering 

relative steepness.  Or surface water to sequentially stream from a location to its steepest 

downhill neighbor thereby identifying a flow-path.    

 

The underlying concept of this data structure is that grid cells for all of the map layers precisely 

coincide, and by simply accessing map values at a row, column location a computer can “drill” 

down through the map layers noting their characteristics.  Similarly, noting the map values of 

surrounding cells identifies the characteristics within a location’s vicinity on a given map layer, 

or set of map layers.   

 

Keep in mind that while terrain elevation is the most common example of a map surface, it is by 

no means the only one.  In natural systems, temperature, barometric pressure, air pollution 

concentration, soil chemistry and water turbidity are but a few examples of continuous mapped 

data gradients.  In human systems, population density, income level, life style concentration, 

crime occurrence, disease incidence rate all form continuous map surfaces.  In economic 

systems, home values, sales activity and travel-time to/from stores form map variables that that 

track spatial patterns.     

 

In fact the preponderance of spatial data is easily and best represented as grid-based continuous 

map surfaces that are preconditioned for use in map analysis and modeling.  The computer does 

the heavy-lifting of the computation …what is needed is a new generation of creative minds that 

goes beyond mapping to “thinking with maps” within this less familiar, quantitative 

framework— a SpatialSTEM environment. 
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 _____________________________ 
Author’s Notes:  My involvement in map analysis/modeling began in the 1970s with doctoral work in computer-assisted analysis 

of remotely sensed data a couple of years before we had civilian satellites.  The extension from digital imagery classification 

using multivariate statistics and pattern recognition algorithms in the 70s to a comprehensive grid-based mathematical structure 

for all forms of mapped data in the 80s was a natural evolution.  See www.innovativegis.com, select “Online Papers” for a link 

to a 1986 paper on “A Mathematical Structure for Analyzing Maps” that serves as an early introduction to a comprehensive 

framework for map analysis/modeling. 

 
 

Map-ematically Messing with Mapped 
Data 
     

(GeoWorld, February 2012)    
(return to top of Topic) 

 

The last section introduced the idea of spatialSTEM for teaching map analysis and modeling 

fundamentals within a mathematical context that resonates with science, technology, engineering 

and math/stat communities.  The discussion established a general framework and grid-based data 

structure needed for quantitative analysis of spatial patterns and relationships.  This section 

focuses on the nature of mapped data, an example of a grid-math/algebra application and 

discussion of extended spatial analysis operations.         

 

 
 

Figure 1. Spatial Data Perspectives—Where is What. 

 

Figure 1 identifies the two primary perspectives of spatial data—1) Numeric that indicates how 

numbers are distributed in “number space” (What condition) and 2) Geographic that indicated 
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how numbers are distributed in “geographic space” (Where condition).  The numeric perspective 

can be grouped into categories of Qualitative numbers that deal with general descriptions based 

on perceived “quality” and Quantitative numbers that deal with measured characteristics or 

“quantity.”   

 

Further classification identifies the familiar numeric data types of Nominal, Ordinal, Interval, 

Ratio and Binary.  It is generally well known that very few math/stat operations can be 

performed using qualitative data (Nominal, Ordinal), whereas a wealth of operations can be used 

with quantitative data (Interval, Ratio).  Only a specialized few operations utilize Binary data.   

 

Less familiar are the two geographic data types.  Choropleth numbers form sharp and 

unpredictable boundaries in space, such as the values assigned to the discrete map features on a 

road or cover type map.  Isopleth numbers, on the other hand, form continuous and often 

predictable gradients in geographic space, such as the values on an elevation or temperature 

surface.   

 

Putting the Where and What perspectives of spatial data together, Discrete Maps identify 

mapped data with spatially independent numbers (qualitative or quantitative) forming sharp 

abrupt boundaries (choropleth), such as a cover type map.  Discrete maps generally provide 

limited footholds for quantitative map analysis.  On the other hand, Continuous Maps contain a 

range of values (quantitative only) that form spatial gradients (isopleth), such as an elevation 

surface.  They provide a wealth of analytics from basic grid math to map algebra, calculus and 

geometry.    

 

 
 

Figure 2. Basic Grid Math and Algebra example. 
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Site-specific farming provides a good example of basic grid math and map algebra using 

continuous maps (figure 2).  Yield Mapping involves simultaneously recording yield flow and 

GPS position as a combine harvests a crop resulting in a grid map of thousands of geo-registered 

numbers that track crop yield throughout a field.   Grid Math can be used to calculate the 

mathematical difference in yield at each location between two years by simply subtracting the 

respective yield maps.  Map Algebra extends the processing by spatially evaluating the full 

algebraic percent change equation.   

 

The paradigm shift in this map-ematical approach is that map variables, comprised of thousands 

of geo-registered numbers, are substituted for traditional variables defined by only a single value.  

Map algebra’s continuous map solution shows localized variation, rather than a single “typical” 

value being calculated (i.e., 37.3% increase in the example) and assumed everywhere the same in 

non-spatial analysis.    

 

Figure 3 expands basic Grid Math and Map Algebra into other mathematical arenas.  Advanced 

Grid Math includes most of the buttons on a scientific calculator to include trigonometric 

functions.  For example, taking the cosine of a slope map expressed in degrees and multiplying it 

times the planimetric surface area of a grid cell calculates the surface area of the “inclined plane” 

at each grid location.  The difference between planimetric area represented by traditional maps 

and surface area based on terrain steepness can be dramatic and greatly affect the 

characterization of “catchment areas” in environmental and engineering models of surface 

runoff.   

 

 
 

Figure 3.  Spatial Analysis operations.  
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A Map Calculus expresses such functions as the derivative and integral within a spatial context.  

The derivative traditionally identifies a measure of how a mathematical function changes as its 

input changes by assessing the slope along a curve in 2-dimensional abstract space.   

 

The spatial equivalent calculates a “slope map” depicting the rate of change in a continuous map 

variable in 3-dimensional geographic space.  For an elevation surface, slope depicts the rate of 

change in elevation.  For an accumulation cost surface, its slope map represents the rate of 

change in cost (i.e., a marginal cost map).  For a travel-time accumulation surface, its slope map 

indicates the relative change in speed and its aspect map identifies the direction of optimal 

movement at each location.  Also, the slope map of an existing topographic slope map (i.e., 

second derivative) will characterize surface roughness (i.e., areas where slope itself is changing). 

   

Traditional calculus identifies an integral as the net signed area of a region along a curve 

expressing a mathematical function.  In a somewhat analogous procedure, areas under portions 

of continuous map surfaces can be characterized.  For example, the total area (planimetric or 

surface) within a series of watersheds can be calculated; or the total tax revenue for various 

neighborhoods; or the total carbon emissions along major highways; or the net difference in crop 

yield for various soil types in a field.  In the spatial integral, the net sum of the numeric values 

for portions of a continuous map surface (3D) is calculated in a manner comparable to 

calculating the area under a curve (2D). 

 

Traditional geometry defines Distance as “the shortest straight line between two points” and 

routinely measures it with a ruler or calculates it using the Pythagorean Theorem.  Map 

Geometry extends the concept of distance to Simple Proximity by relaxing the requirement of 

just “two points” for distances to all locations surrounding a point or other map feature, such as a 

road.   

 

A further extension involves Effective Proximity that relaxes “straight line” to consider absolute 

and relative barriers to movement.  For example effective proximity might consider just uphill 

locations along a road or a complex set of variable hiking conditions that impede movement 

from a road as a function of slope, cover type and water barriers.    

 

The result is that the “shortest but not necessarily straight distance” is assigned to each grid 

location.  Because a straight line connection cannot be assumed, optimal path routines in Plane 

Geometry Connectivity (2D space) are needed to identify the actual shortest routes.  Solid 

Geometry Connectivity (3D space) involves line-of-sight connections that identify visual 

exposure among locations.  A final class of operations involves Unique Map Analytics, such as 

size, shape, intactness and contiguity of map features.       

 

Grid-based map analysis takes us well beyond traditional mapping …as well as taking us well 

beyond traditional procedures and paradigms of mathematics.  The next installment of 

spatialSTEM discussion considers the extension of traditional statistics to spatial statistics.   

_____________________________ 
Author’s Notes:  a table of URL links to further readings on the grid-based map analysis/modeling concepts, terminology, 

considerations and procedures described in this three-part series on spatialSTEM is posted at 

www.innovativegis.com/basis/MapAnalysis/Topic30/sSTEM/sSTEMreading.htm. 
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Paint by Numbers Outside the 
Traditional Statistics Box 
     

(GeoWorld, March 2012)    
(return to top of Topic) 

 

The two previous sections described a general framework and approach for teaching spatial 

analysis within a mathematical context that resonates with science, technology, engineering and 

math/stat communities (spatialSTEM).  The following discussion focuses on extending 

traditional statistics to a spatial statistics for understanding geographic-based patterns and 

relationships.   

 

Whereas Spatial analysis focuses on “contextual relationships” in geographic space (such as 

effective proximity and visual exposure), Spatial statistics focuses on “numerical relationships” 

within and among mapped data (figure 1).  From a spatial statistics perspective there are three 

primary analytical arenas— Summaries, Comparisons and Correlations. 

 

 
 

Figure 1. Spatial Statistics uses numerical analysis to uncover spatial relationships and patterns.  

 

Statistical summaries provide generalizations of the grid values comprising a single map layer 

(within), or set of map layers (among).  Most common is a tabular summary included in a 

discrete map’s legend that identifies the area and proportion of occurrence for each map 

category, such as extremely steep terrain comprising 286 acres (19 percent) of a project area.  Or 
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for a continuous map surface of slope values, the generalization might identify the data range as 

from 0 to 65% and note that the average slope is 24.4 with a standard deviation of 16.7.   

 

Summaries among two or more discrete maps generate cross-tabular tables that “count” the joint 

occurrence of all categorical combinations of the map layers.  For example, the coincidence of 

steepness and cover maps might identify that there are 242 acres of forest cover on extremely 

steep slopes (16 percent), a particularly hazardous wildfire joint condition. 

 

Map comparison and correlation techniques only apply to continuous mapped data.  

Comparisons within a single map surface involve normalization techniques.  For example, a 

Standard Normal Variable (SNV) map can be generated to identify “how unusual” (above or 

below) each map location is compared to the typical value in a project area. 

 

Direct comparisons among continuous map surfaces include appropriate statistical tests (e.g., F-

test), difference maps and surface configuration differences based on variations in surface slope 

and orientation at each grid location.  

 

Map correlations provide a foothold for advanced inferential spatial statistics.  Spatial 

autocorrelation within a single map surface identifies the similarity among nearby values for 

each grid location.  It is most often associated with surface modeling techniques that employ the 

assumption that “nearby things are more alike than distant things”—high spatial 

autocorrelation—for distance-based weight averaging of discrete point samples to derive a 

continuous map surface.  

 

Spatial correlation, on the other hand, identifies the degree of geographic dependence among two 

or more map layers and is the foundation of spatial data mining.  For example, a map surface of a 

bank’s existing concentration of home equity loans within a city can be regressed against a map 

surface of home values.  If a high level of spatial dependence exists, the derived regression 

equation can be used on home value data for another city.  The resulting map surface of 

estimated loan concentration proves useful in locating branch offices.   

 

In practice, many geo-business applications utilize numerous independent map layers including 

demographics, life style information and sales records from credit card swipes in developing 

spatially consistent multivariate models with very high R-squared values.  Like most things from 

ecology to economics to environmental considerations, spatial expression of variable dependence 

echoes niche theory with grid-based spatial statistics serving as a powerful tool for understanding 

geographic patterns and relationships. 

 

Figure 2 describes an example of basic surface modeling and the linkage between numeric space 

and geographic space representations using environmentally-oriented mapped data.  Soil samples 

are collected and analyzed assuring that geographic coordinates accompany the field samples.  

The resulting discrete point map of the field soil chemistry data are spatially interpolated into a 

continuous map surface characterizing the data set’s geographic distribution.   

 

The bottom portion of figure 2 depicts the linkage between Data Space and Geographic Space 

representations of the mapped data.  In data space, a standard normal curve is fitted to the data as 
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means to characterize its overall “typical value” (Average= 22.9) and “typical dispersion” 

(StDev= 18.7) without regard for the data’s spatial distribution.   

  

In geographic space, the Average forms a flat plane implying that this value is assumed to be 

everywhere within +/- 1 Standard Deviation about two-thirds of the time and offering no 

information about where values are likely more or less than the typical value.  The fitted 

continuous map surface, on the other hand, details the spatial variation inherent in the field 

collected samples.   

         

 
 

Figure 2. An example of Surface Modeling that derives a continuous map surface from set of discrete 

point data. 

  

Nonspatial statistics identifies the “central tendency” of the data, whereas surface modeling maps 

the “spatial variation” of the data.  Like a Rochart ink blot, the histogram and the map surface 

provide two different perspectives.  Clicking a histogram pillar identifies all of the grid cells 

within that range; clicking on a grid location identifies which histogram range contains it.   

 

This direct linkage between the numerical and spatial characteristics of mapped data provides the 

foundation for the spatial statistics operations outlined in figure 3.  The first four classes of 

operations are fairly self-explanatory with the exception “Roving Window” summaries.  This 

technique first identifies the grid values surrounding a location, then mathematically/statistically 

summarizes the values, assigns the summary to that location and then moves to the next location 

and repeats the process.   

 

Another specialized use of roving windows is for Surface Modeling.  As described in figure 2, 

inverse-distance weighted spatial interpolation (IDW) is the weight-averaged of samples based 
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on their relative distances from the focal location.  For qualitative data, the total number of 

occurrences within a window reach can be summed for a density surface.  

 

In figure 3 for example, a map identifying customer locations can be summed to identify the total 

number of customers within a roving window to generate a continuous map surface customer 

density.  In turn, the average and standard deviation can be used to identify “pockets” of 

unusually high customer density.   

       

 
 

Figure 3. Classes of Spatial Statistics operations.  

 

Standard multivariate techniques using “data distance,” such as Maximum Likelihood and 

Clustering, can be used to classify sets of map variables.  Map Similarity, for example, can be 

used to compare each map location’s pattern of values with a comparison location’s pattern to 

create a continuous map surface of the relative degree of similarity at each map location. 

 

Statistical techniques, such as Regression, can be used to develop mathematical functions 

between dependent and independent map variables.  The difference between spatial and non-

spatial approaches is that the map variables are spatially consistent and yield a prediction map 

that shows where high and low estimates are to be expected.    

 

The bottom line in spatial statistics (as well as spatial analysis) is that the spatial character within 

and among map layers is taken into account.  The grid-based representation of mapped data 

provides the consistent framework that needed for these analyses.  Each database record contains 

geographic coordinates (X,Y= Where) and value fields identifying the characteristics/conditions 

at that location (Vi= What).   
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From this map-ematical view, traditional math/stat procedures can be extended into geographic 

space.  The paradigm shift from our paper map legacy to “maps as data first, pictures later” 

propels us beyond mapping to map analysis and modeling.  In addition, it defines a 

comprehensive and common spatialSTEM educational environment that stimulates students with 

diverse backgrounds and interests to “think analytically with maps” in solving complex 

problems.   

_____________________________ 
Author’s Notes:  a table of URL links to further readings on the grid-based map analysis/modeling concepts, terminology, 

considerations and procedures described in this three-part series on spatialSTEM is posted at 

www.innovativegis.com/basis/MapAnalysis/Topic30/sSTEM/sSTEMreading.htm. 

 
 

Simultaneously Trivializing and 
Complicating GIS     

(GeoWorld, April 2012) 
  (return to top of Topic) 

 

Several things seem to be coalescing in my mind (or maybe colliding is a better word).  GIS has 

moved up the technology adoption curve from Innovators in the 1970s to Early Adopters in the 

80s, to Early Majority in the 90s, to Late Majority in the 00s and is poised to capture the 

Laggards this decade.  Somewhere along this progression, however, the field seems to have 

bifurcated along technical and analytical lines.   

 

The lion’s share of this growth has been GIS’s ever expanding capabilities as a “technical tool” 

for corralling vast amounts of spatial data and providing near instantaneous access to remote 

sensing images, GPS navigation, interactive maps, asset management records, geo-queries and 

awesome displays.  In just forty years GIS has morphed from boxes of cards passed through a 

window to a megabuck mainframe that generated page-printer maps, to today’s sizzle of a 3D 

fly-through rendering of terrain anywhere in the world with back-dropped imagery and semi-

transparent map layers draped on top—all pushed from the cloud to a GPS enabled tablet or 

smart phone.  What a ride!    

 

However, GIS as an “analytical tool” hasn’t experienced the same meteoric rise—in fact it might 

be argued that the analytic side of GIS has somewhat stalled over the last decade.  I suspect that 

in large part this is due to the interests, backgrounds, education and excitement of the ever 

enlarging GIS tent.  Several years ago (see figure 1 and author’s note 1) I described the changes 

in breadth and depth of the community as flattening from the 1970s through the 2000s.  By sheer 

numbers, the balance point has been shifting to the right toward general and public users with 

commercial systems responding to market demand for more technological advancements.   

 

The 2010s will likely see billions of general and public users with the average depth of science 

and technology knowledge supporting GIS nearly “flatlining.”  Success stories in quantitative 

map analysis and modeling applications have been all but lost in the glitz n' flash of the 

technological whirlwind.  The vast potential of GIS to change how society perceives maps, 

mapped data and their use in spatial reasoning and problem solving seems relatively derailed.  

http://www.innovativegis.com/basis/MapAnalysis/Topic30/sSTEM/sSTEMreading.htm
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In a recent editorial in Science entitled Trivializing Science Education, Editor-in-Chief Bruce 

Alberts laments that “Tragically, we have managed to simultaneously trivialize and complicate 

science education” (author’s note 2).  A similar assessment might be made for GIS education.  

For most students and faculty on campus, GIS technology is simply a set of highly useful apps 

on their smart phone that can direct them to the cheapest gas for tomorrow’s ski trip and locate 

the nearest pizza pub when they arrive.  Or it is a Google fly-by of the beaches around Cancun.  

Or a means to screen grab a map for a paper on community-based conservation of howler 

monkeys in Belize.     

 

 
 

Figure 1.  Changes in breadth and depth of the community. 

 

To a smaller contingent on campus, it is career path that requires mastery of the mechanics, 

procedures and buttons of extremely complex commercial software systems for acquiring, 

storage, processing, and display spatial information.  Both perspectives are valid.  However 

neither fully grasps the radical nature of the digital map and how it can drastically change how 

we perceive and infuse spatial information and reasoning into science, policy formation and 

decision-making—in essence, how we can “think with maps.”      

 

A large part of missing the mark on GIS’s full potential is our lack of “reaching” out to the larger 

science, technology, engineering and math (STEM) communities on campus by insisting 1) that 

non-GIS students interested in understanding map analysis and modeling must be tracked into 

general GIS courses that are designed for GIS specialists, and 2) that the material presented 

primarily focuses on commercial GIS software mechanics that GIS-specialists need to know to 

function in the workplace. 
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Much of the earlier efforts in structuring a framework for quantitative map analysis has focused 

on how the analytical operations work within the context of Focal, Local and Zonal 

classification by Tomlin, or even my own the Reclassify, Overlay, Distance and Neighbors 

classification scheme (see top portion of figure 2 and author’s note 3).  The problem with these 

structuring approaches is that most STEM folks just want to understand and use the analytical 

operations properly—not appreciate the theoretical geographic-related elegance, or code the 

algorithm.  

 

 
 

Figure 2.  Alternative frameworks for quantitative map analysis. 

 

The bottom portion of figure 2 outlines restructuring of the basic spatial analysis operations to 

align with traditional mathematical concepts and operations (author’s note 4).  This provides a 

means for the STEM community to jump right into map analysis without learning a whole new 

lexicon or an alternative GIS-centric mindset.  For example, the GIS concept/operation of Slope= 

spatial “derivative”, Zonal functions= spatial “integral”, Eucdistance= extension of “planimetric 

distance” and the Pythagorean Theorem to proximity, Costdistance= extension of distance to 

effective proximity considering absolute and relative barriers that is not possible in non-spatial 

mathematics, and Viewshed= “solid geometry connectivity”.   

 

Figure 3 outlines the conceptual development of three of these operations.  The top set of 

graphics identifies the Calculus Derivative as a measure of how a mathematical function changes 

as its input changes by assessing the slope along a curve in 2-dimensional abstract space—

calculated as the “slope of the tangent line” at any location along the curve.  In an equivalent 

manner the Spatial Derivative creates a slope map depicting the rate of change of a continuous 

map variable in 3-dimensional geographic space—calculated as the slope of the “best fitted 

plane” at any location along the map surface. 

      

Advanced Grid Math includes most of the buttons on a scientific calculator to include 

trigonometric functions.  For example, calculating the “cosine of the slope values” along a terrain 

surface and then multiplying times the planimetric surface area of a grid cell will solve for the 

increased real-world surface area of the “inclined plane” at each grid location.  
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The Calculus Integral is identified as the “area of a region under a curve” expressing a 

mathematical function.  The Spatial Integral counterpart “summarizes map surface values within 

specified geographic regions.”  The data summaries are not limited to just a total but can be 

extended to most statistical metrics.  For example, the average map surface value can be 

calculated for each district in a project area.  Similarly, the coefficient of variation ((Stdev / 

Average) * 100) can be calculated to assess data dispersion about the average for each of the 

regions. 

 

 
 

Figure 3.  Conceptual extension of derivative, trigonometric functions and integral to mapped data and 

map analysis operations. 

  

By recasting GIS concepts and operations of map analysis within the general scientific language 

of math/stat we can more easily educate tomorrow’s movers and shakers in other fields in 

“spatial reasoning”—to think of maps as “mapped data” and express the wealth of quantitative 

analysis thinking they already understand on spatial variables.   

 

Innovation and creativity in spatial problem solving is being held hostage to a trivial mindset of 

maps as pictures and a non-spatial mathematics that presuppose mapped data can be collapsed to 

a single central tendency value that ignores the spatial variability inherent in the data.  

Simultaneously, the “build it (GIS) and they will come (and take our existing courses)” 

educational paradigm is not working as it requires potential users to become a GIS’perts in 

complicated software systems.   
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GIS must take an active leadership role in “leading” the STEM community to the 

similarities/differences and advantages/disadvantages in the quantitative analysis of mapped 

data—there is little hope that the STEM folks will make the move on their own.  Next month 

we’ll consider recasting spatial statistics concepts and operations into a traditional statistics 

framework.    
_____________________________ 

Author’s Notes:  1) see “A Multifaceted GIS Community” in Topic 27, GIS Evolution and Future Trends in the 

online book Beyond Mapping III, posted at www.innovativegis.com.  2) Bruce Alberts in Science, 20 January 

2012:Vol. 335 no. 6066 p. 263.  3) see “An Analytical Framework for GIS Modeling” posted at 

www.innovativegis.com/basis/Papers/Other/GISmodelingFramework/.  4) see “SpatialSTEM: Extending Traditional 

Mathematics and Statistics to Grid-based Map Analysis and Modeling” posted at 

www.innovativegis.com/basis/Papers/Other/SpatialSTEM/. 

 

 

Infusing Spatial Character into 
Statistics     

(GeoWorld, May 2012) 
  (return to top of Topic) 

 

The previous section discussed the assertion that we might be simultaneously trivializing and 

complicating GIS.  At the root of the argument was the contention that “innovation and creativity 

in spatial problem solving is being held hostage to a trivial mindset of maps as pictures and a 

non-spatial mathematics that presuppose mapped data can be collapsed into a single central-

tendency value that ignores the spatial variability inherent in data.”   

 

The discussion described a mathematical framework that organizes the spatial analysis toolbox 

into commonly understood mathematical concepts and procedures.  For example, the GIS 

concept/operation of Slope= spatial “derivative,” Zonal functions= spatial “integral,” 

Eucdistance= extension of “planimetric distance” and the Pythagorean Theorem to proximity, 

Costdistance= extension of distance to effective proximity considering absolute and relative 

barriers that is not possible in non-spatial mathematics, and Viewshed= “solid geometry 

connectivity.” 

 

This section does a similar translation to describe a statistical framework for organizing the 

spatial statistics toolbox into commonly understood statistical concepts and procedures.  But first 

we need to clarify the differences between spatial analysis and spatial statistics.  Spatial analysis 

can be thought of as an extension of traditional mathematics involving the “contextual” 

relationships within and among mapped data layers.  It focuses on geographic associations and 

connections, such as relative positioning, configurations and patterns among map locations. 

 

Spatial statistics, on the other hand, can be thought of as an extension of traditional statistics 

involving the “numerical” relationships within and among mapped data layers.  It focuses on 

mapping the variation inherent in a data set rather than characterizing its central tendency (e.g., 

average, standard deviation) and then summarizing the coincidence and correlation of the spatial 

distributions.   
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The top portion of figure 1 identifies the two dominant GIS perspectives of spatial statistics— 

Surface Modeling that derives a continuous spatial distribution of a map variable from point 

sampled data and Spatial Data Mining that investigates numerical relationships of map variables.   

 

The bottom portion of the figure outlines restructuring of the basic spatial statistic operations to 

align with traditional non-spatial statistical concepts and operations (see author’s note).  The first 

three groupings are associated with general descriptive statistics, the middle two involve unique 

spatial statistics operations and the final two identify classification and predictive statistics. 

 

 
 

Figure 1.  Alternative frameworks for quantitative map analysis.  

 

Figure 2 depicts the non-spatial and spatial approaches for characterizing the distribution of 

mapped data and the direct link between the two representations.  The left side of the figure 

illustrates non-spatial statistics analysis of an example set of data as fitting a standard normal 

curve in “data space” to assess the central tendency of the data as its average and standard 

deviation.  In processing, the geographic coordinates are ignored and the typical value and its 

dispersion are assumed to be uniformly (or randomly) distributed in “geographic space.”   

 

The top portion of figure 2 illustrates the derivation of a continuous map surface from geo-

registered point data involving spatial autocorrelation.  The discrete point map locates each 

sample point on the XY coordinate plane and extends these points to their relative values (higher 

values in the NE; lowest in the NW).  A roving window is moved throughout the area that 

weight-averages the point data as an inverse function of distance—closer samples are more 

influential than distant samples.  The effect is to fit a surface that represents the geographic 

distribution of the data in a manner that is analogous to fitting a SNV curve to characterize the 

data’s numeric distribution.  Underlying this process is the nature of the sampled data which 

must be numerically quantitative (measurable as continuous numbers) and geographically 

isopleth (numbers form continuous gradients in space).  

 

The lower-right portion of figure 2 shows the direct linkage between the numerical distribution 

and the geographic distribution views of the data.  In geographic space, the “typical value” 

(average) forms a horizontal plane implying that the average is everywhere.  In reality, the 
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average is hardly anywhere and the geographic distribution denotes where values tend to be 

higher or lower than the average.   

 

 

 
 

Figure 2.  Comparison and linkage between spatial and non-spatial statistics  

 

In data space, a histogram represents the relative occurrence of each map value.  By clicking 

anywhere on the map, the corresponding histogram interval is highlighted; conversely, clicking 

anywhere on the histogram highlights all of the corresponding map values within the interval.  

By selecting all locations with values greater than + 1SD, areas of unusually high values are 

located—a technique requiring the direct linkage of both numerical and geographic distributions.   

   

Figure 3 outlines two of the advance spatial statistics operations involving spatial correlation 

among two or more map layers.  The top portion of the figure uses map clustering to identify the 

location of inherent groupings of elevation and slope data by assigning pairs of values into 

groups (called clusters) so that the value pairs in the same cluster are more similar to each other 

than to those in other clusters.    

 

The bottom portion of the figure assesses map correlation by calculating the degree of 

dependency among the same maps of elevation and slope.  Spatially “aggregated” correlation 

involves solving the standard correlation equation for the entire set of paired values to represent 

the overall relationship as a single metric.  Like the statistical average, this value is assumed to 

be uniformly (or randomly) distributed in “geographic space” forming a horizontal plane. 

 

“Localized” correlation, on the other hand, maps the degree of dependency between the two map 

variables by successively solving the standard correlation equation within a roving window to 
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generate a continuous map surface.  The result is a map representing the geographic distribution 

of the spatial dependency throughout a project area indicating where the two map variables are 

highly correlated (both positively, red tones; and negatively, green tones) and where they have 

minimal correlation (yellow tones).   

 

With the exception of unique Map Descriptive Statistics and Surface Modeling classes of 

operations, the grid-based map analysis/modeling system simply acts as a mechanism to spatially 

organize the data.  The alignment of the geo-registered grid cells is used to partition and arrange 

the map values into a format amenable for executing commonly used statistical equations.  The 

critical difference is that the answer often is in map form indicating where the statistical 

relationship is more or less than typical.     

  

 
 

Figure 3.  Conceptual extension of clustering and correlation to mapped data and analysis. 

  

While the technological applications of GIS have soared over the last decade, the analytical 

applications seem to have flat-lined.  The seduction of near instantaneous geo-queries and 

awesome graphics seem to be masking the underlying character of mapped data— that maps are 

numbers first, pictures later.  However, grid-based map analysis and modeling involving Spatial 

Analysis and Spatial Statistics is, for the larger part, simply extensions of traditional mathematics 

and statistics.  The recognition by the GIS community that quantitative analysis of maps is a 

reality and the recognition by the STEM community that spatial relationships exist and are 

quantifiable should be the glue that binds the two perspectives.  That reminds me of a very wise 

observation about technology evolution—    
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“Once a new technology rolls over you, if you're not part of the steamroller, you're part of 

the road.”  ~Stewart Brand, editor of the Whole Earth Catalog 
 

_____________________________ 
Author’s Notes:   for a more detailed discussion, see “SpatialSTEM: Extending Traditional Mathematics and Statistics to Grid-

based Map Analysis and Modeling” posted at www.innovativegis.com/basis/Papers/Other/SpatialSTEM/. 

 

 

Depending on Where is What     

(GeoWorld, March 2013) 
  (return to top of Topic) 

 

Early procedures in spatial statistics were largely focused on the characterization of spatial 

patterns formed by the relative positioning of discrete spatial objects—points, lines, and 

polygons.  The “area, density, edge, shape, core-area, neighbors, diversity and arrangement” of 

map features are summarized by numerous landscape analysis indices, such as Simpson's 

Diversity and Shannon's Evenness diversity metrics; Contagion and Interspersion/Juxtaposition 

arrangement metrics; and Convexity and Edge Contrast shape metrics (see Author’s Note 1).  

Most of these techniques are direct extensions of manual procedures using paper maps and 

subsequently coded for digital maps.   

 

Grid-based map analysis, however, expands this classical view by the direct application of 

advanced statistical techniques in analyzing spatial relationships that consider continuous 

geographic space.  Some of the earliest applications (circa 1960) were in climatology and used 

map surfaces to generate isotherms of temperature and isobars of barometric pressure.    

 

In the 1970s, the analysis of remotely sensed data (raster images) began employing traditional 

statistical techniques, such as Maximum Likelihood Classification, Principle Component 

Analysis and Clustering that had been used in analyzing non-spatial data for decades.  By the 

1990s, these classification-oriented procedures operating on spectral bands were extended to 

include the full wealth of statistical operations, such as Correlation and Regression, utilizing 

diverse sets of geo-registered map variables (grid-based map layers).    

 

It is the historical distinction between “Spatial Pattern characterization of discrete objects” and 

“Spatial Relationship analysis of continuous map surfaces” that identifies the primary conceptual 

branches in spatial statistics.  The spatial relationship analysis branch can be further grouped by 

two types of spatial dependency driving the relationships— Spatial Autocorrelation involving 

spatial relationships within a single map layer, and Spatial Correlation involving spatial 

relationships among multiple map layers (see figure 1).  
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Figure 1. Spatial Dependency involves relationships within a single map layer (Spatial Autocorrelation) 

or among multiple map layers (Spatial Correlation). 

 

Spatial Autocorrelation follows Tobler’s first law of geography— that “…near things are more 

alike than distant things.”  This condition provides the foundation for Surface Modeling used to 

identify the continuous spatial distribution implied in a set of discrete point data based on one of 

four fundamental approaches (see figure 2 and Author’s Note 2).  The first two approaches—

Map Generalization and Geometric Facets—consider the entire set of point values in 

determining the “best fit” of a polynomial equation, or a set of 3-dimentional geographic shapes.   

 

For example, a 1
st
 order polynomial (tilted plane) fitted to a set of data points indicates its spatial 

trend with decreasing values aligning with the direction cosines of the plane.  Or, a complex set 

of abutting tilted triangular planes can be fitted to the data values to capture significant changes 

in surface form (triangular tessellation).         

 

The lower two approaches—Density Analysis and Spatial Interpolation—are based on localized 

summaries of the point data utilizing “roving windows.” Density Analysis counts the number of 

data points in the window (e.g., number of crimes incidents within half a kilometer) or computes 

the sum of the values (e.g., total loan value within half a kilometer). 

 

However, the most frequently used surface modeling approach is Spatial Interpolation that 

“weight-averages” data values within a roving window based on some function of distance.  For 

example, Inverse Distance Weighting (IDW) interpolation uses the geometric equation 1/D
 Power

 

to greatly diminish the influence of distant data values in computing the weighted-average.   
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Figure 2. Surface Modeling involves generating map surfaces that portray the continuous spatial 

distribution implied in a set of discrete point data. 

 

The bottom portion of figure 2 encapsulates the basis for Kriging which derives the weighting 

equation from the point data values themselves, instead of assuming a fixed geometric equation.  

A variogram plot of the joint variation among the data values (blue curve) shows the differences 

in the values as a function of distance.  The inverse of this derived equation (red curve) is used to 

calculate the distance affected weights used in weight-averaging the data values.     

 

The other type of spatial dependency—Spatial Correlation—provides the foundation for 

analyzing spatial relationships among map layers.  It involves spatially evaluating traditional 

statistical procedures using one of four ways to access the geo-registered data— Local, Focal, 

Zonal and Global (see figure3 and Author’s Notes 3 and 4).  Once the spatially coincident data is 

collected and compatibly formatted, it can be directly passed to standard multivariate statistics 

packages or to more advanced statistical engines (CART, Induction or Neural Net).  Also, a 

growing number of GIS systems have incorporated many of the most frequently used statistical 

operations.  
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Figure 3. Statistical Analysis of mapped data involves repackaging mapped data for processing by 

standard multivariate statistics or more advanced statistical operations. 

 

The majority of the Statistical Analysis operations simply “repackage” the map values for 

processing by traditional statistics procedures.  For example, “Local” processing of map layers is 

analogous to what you see when two maps are overlaid on a light-table.  As your eye moves 

around, you note the spatial coincidence at each spot.  In grid-based map analysis, the cell-by-

cell collection of data for two or more grid layers accomplishes the same thing by “spearing” the 

map values at a location, creating a summary (e.g., simple or weighted-average), storing the new 

value and repeating the process for the next location.   

 

“Focal” processing, on the other hand, “funnels” the map layer data surrounding a location 

(roving window), creates a summary (e.g., correlation coefficient), stores the new value and then 

repeats the process.   Note that both local and focal procedures store the results on a cell-by-cell 

basis.   

 

The other two techniques (right side of figure 3) generate entirely different summary results.  

“Zonal” processing uses a predefined template (termed a map region) to “lace” together the map 

values for a region-wide summary.  For example, a wildlife habitat unit might serve as a template 

map to retrieve slope values from a data map of terrain steepness, compute the average of the 

values, and then store the result for all of the locations defining the region.  Or maps of animal 

activity for two time periods could be accessed and a paired t-test performed to determine if a 

significant difference exists within the habitat unit.  The interpretation of the resultant map value 

assigned to all of the template locations is that each cell is an “element of a spatial entity having 

that overall summary statistic.” 
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“Global” processing isn’t much different from the other techniques in terms of mechanics, but is 

radically different in terms of the numerical rigor implied.  In map-wide statistical analysis, the 

entire map is considered a variable, each cell a case and each value a measurement (or instance) 

in mathematical/statistical modeling terminology.  Within this context, the processing has “all of 

the rights, privileges and responsibilities” afforded non-spatial quantitative analysis.  For 

example, a regression could be spatially evaluated by “plunging” the equation through a set of 

independent map variables to generate a dependent variable map on cell-by-cell basis, or 

reported as an overall map-wide value.   

 

So what’s the take-home from all this discussion?  It is that maps are “numbers first, pictures 

later” and we can spatially discover and subsequently evaluate the spatial relationships inherent 

in sets of grid-based mapped data as true map-ematical expressions.  All that is needed is a new 

perspective of what a map is (and isn’t).      

_____________________________ 
Author’s Notes: in the online book Beyond Mapping III at www.innovativegis.com/basis/MapAnalysis/, 1) see Topic 9, 

“Analyzing Landscape Patterns”; 2) see Topics 2, “Spatial Interpolation Procedures and Assessment” and 8, “Investigating 

Spatial Dependency”; 3) refers to C. Dana Tomlin’s four data acquisition classes; 4) for more discussion on data acquisition 

techniques, see Topic 22, “Reclassifying and Overlaying Maps,” Section 2 “Getting the Numbers Right.” 

 

 

Spatially Evaluating the T-test    

(GeoWorld, April 2013) 
  (return to top of Topic) 

 

The previous section  provided everything you ever wanted (or maybe never wanted) to know 

about the map-ematical framework for modern Spatial Statistics.  Its historical roots are in 

characterizing spatial patterns formed by the relative positioning of discrete spatial objects—

points, lines, and polygons.  However, Spatial Data Mining has expanded the focus to the direct 

application of advanced statistical techniques in the quantitative analysis of spatial relationships 

that consider continuous geographic space.   

 

From this perspective, grid-based data is viewed as characterizing the spatial distribution of map 

variables, as well as the data’s numerical distribution.  For example, in precision agriculture GPS 

and yield monitors are used to record the position of a harvester and the current yield volume 

every second as it moves through a field (figure 1).  These data are mapped into the grid cells 

comprising the analysis frame geo-registered to the field to generate the 1997 Yield and 1998 

Yield maps shown in the figure (3,289 50-foot grid cells covering a central-pivot field in 

Colorado).   

 

The deeper green appearance of the 1998 map indicates greater crop yield over the 1997 

harvest—but how different is the yield between the two years?  …where are there greatest 

differences?  …are the differences statistically significant?       
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Figure 1. Precision Agriculture yield maps identify the yield volume harvested from each grid location 

throughout a field.  These data can be extracted using a “roving window” to form a localized subset of 

paired values surrounding a focal location.  

 

Each grid cell location identifies the paired yield volumes for the two years.  The simplest 

comparison would be to generate a Difference map by simply subtracting them.  The calculated 

difference at each location would tell you how different the yield is between the two years and 

where the greatest differences occur.  But it doesn’t go far enough to determine if the differences 

are “significantly different” within a statistical context.   

 

An often used procedure for evaluating significant difference is the paired T-test that assesses 

whether the means of two groups are statistically different.  Traditionally, an agricultural 

scientist would sample several locations in the field and apply the T-test to the sampled data.  

But the yield maps in essence form continuous set of geo-registered sample plots covering the 

entire field.  A T-test could be evaluated for the entire set of 3,289 paired yield values (or a 

sampled sub-set) for an overall statistical assessment of the difference. 

 

However, the following discussion suggests a different strategy enabling the T-test concept to be 

spatially evaluated to identify 1) a continuous map of localized T-statistic metrics and 2) a binary 

map the T-test results.  Instead of a single scalar value determining whether to accept or reject 

the null hypothesis for an entire field, the spatially extended statistical procedure identifies where 

it can be accepted or rejected—valuable information for directing attention to specific areas.      

 

The key to spatially evaluating the T-test involves an often used procedure involving the 

statistical summary of values within a specified distance of a focal location, termed a “roving 
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window.”  The lower portion of figure 1 depicts a 5-cell roving window (73 total cells) centered 

on column 33, row 53 in the analysis frame.  The pair of yield values within the window are 

shown in the Excel spread sheet (columns A and B) on the right side of the figure 1. 

 

Figure 2 shows these same data and the procedures used to solve for the T-statistic within the 

localized window.  They involve the ratio of the “Mean of the differences” to a normalized 

“Standard Deviation of the differences.”  The equation and solution steps are— 
 

TStatistic = dMean / ( dStdev / Sqrt(n) ) 
 

Step 1. Calculate the difference (di = yi − xi) between the two values for each pair.  
Step 2. Calculate the mean difference of the paired observations, dAvg. 
Step 3. Calculate the standard deviation of the differences, dStdev. 
Step 4. Calculate the T-statistic by dividing the mean difference between the paired 
observations by the standard deviation of the difference divided by the square root of 
the number of paired values— TStatistic = dAvg / ( dStdev   / Sqrt(n) ). 

 

One way to conceptualize the spatial T-statistic solution is to visualize the Excel spreadsheet 

moving throughout the field (roving window), stopping for an instant at a location, collecting the 

paired yield volume values within its vicinity (5-cell radius reach), pasting these values into 

columns A and B, and automatically computing the “differences” in column C and the other 

calculations.  The computed T-statistic is then stored at the focal location of the window and the 

procedure moves to the next cell location, thereby calculating the “localized T-statistic” for every 

location in the field. 
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Figure 2. The T-statistic for the set of paired map values within a roving window is calculated by dividing 

the Mean of the Difference to the Standard Deviation of the Mean Differences divided by the number of 

paired values. 

 

However, what really happens in the grid-based map analysis solution is shown in figure 3.  

Instead of a roving Excel solution, steps 1 - 3 are derived as a separate map layers using 

fundamental map analysis operations.  The two yield maps are subtracted on a cell-by-cell basis 

and the result is stored as a new map of the Difference (step 1).  Then a neighborhood analysis 

operation is used to calculate and store a map of the “average of the differences” within a roving 

5-cell window (step 2).  The same operation is used to calculate and store the map of localized 

“standard deviation of the differences” (step 3).     

 

The bottom-left portion of figure 3 puts it all together to derive the localized T-statistics (step 4).  

Map variables of the Mean and StDev of the differences (both comprised of 3,289 geo-registered 

values) are retrieved from storage and the map algebra equation in the lower-left is solved 3,289 

times— once for each map location in the field.  The resultant T-statistic map displayed in the 

bottom-right portion shows the spatial distribution of the T-statistic with darker tones indicating 

larger computed values (see author’s notes 1 and 2).   

 

The T-test map is derived by simply assigning the value 0 = no significant difference (yellow) to 

locations having values less than the critical statistic from a T-table; and by assigning 1= 

significant difference (black) to locations with larger computed values. 
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Figure 3. The grid-based map analysis solution for T-statistic and T-test maps involves sequential 

processing of map analysis operations on geo-registered map variables, analogous to traditional, non-

spatial algebraic solutions.     

 

The idea of a T-test map at first encounter might seem strange.  It concurrently considers the 

spatial distribution of data, as well as its numerical distribution in generating a new perspective 

of quantitative data analysis (dare I say a paradigm shift?).  While the procedure itself has 

significant utility in its application, it serves to illustrate a much broader conceptual point— the 

direct extension of the structure of traditional math/stat to map analysis and modeling.  

 

Flexibly combining fundamental map analysis operations requires that the procedure accepts 

input and generates output in the same gridded format.  This is achieved by the geo-registered 

grid-based data structure and requiring that each analytic step involve— 
 

 retrieval of one or more map layers from the map stack,  

 manipulation that applies a map-ematical operation to that mapped data,  

 creation of a new map layer comprised of the newly derived map values, and  

 storage of that new map layer back into the map stack for subsequent processing.  

 

The cyclical nature of the retrieval-manipulation-creation-storage processing structure is 

analogous to the evaluation of “nested parentheticals” in traditional algebra.  The logical 

sequencing of primitive map analysis operations on a set of map layers (a geo-registered “map 

stack”) forms the map analysis and modeling required in quantitative analysis of mapped data 

(see author’s note 3).  As with traditional algebra, fundamental techniques involving several 

basic operations can be identified, such as T-statistic and T-test maps, which are applicable to 

numerous research and applied endeavours.  

 

The use of fundamental map analysis operations in a generalized map-ematical context 

accommodates a variety of analyses in a common, flexible and intuitive manner.  Also, it 

provides a familiar mathematical context for conceptualizing, understanding and communicating 

the principles of map analysis and modeling— the SpatialSTEM framework.   

_____________________________ 
Author’s Note: 1) Darian Krieter with DTSgis has developed an ArcGIS Python script calculating the localized T-

statistic available at www.innovativegis.com/basis/MapAnalysis/Topic30/PythonT/; 2) an animated slide for 

communicating the spatial T-test concept, see www.innovativegis.com/basis/MapAnalysis/Topic30/Spatial_Ttest.ppt, 

3) See www.innovativegis.com/basis/Papers/Online_Papers.htm  for a link to an early paper “A Mathematical 

Structure for Analyzing Maps.”  

 

 

Organizing Geographic Space for 
Effective Analysis     

(GeoWorld, September 2012) 
  (return to top of Topic) 

 

A basic familiarity of the two fundamental data types supporting geotechnology—vector and 

raster—is important for understanding map analysis procedures and capabilities (see author’s 

http://www.innovativegis.com/basis/MapAnalysis/Topic30/PythonT/
http://www.innovativegis.com/basis/MapAnalysis/Topic30/Spatial_Ttest.ppt
http://www.innovativegis.com/basis/Papers/Online_Papers.htm
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note).  Vector data is closest to our manual mapping heritage and is familiar to most users as it 

characterizes geographic space as collection of discrete spatial objects (points, lines and 

polygons) that are easy to draw.  Raster data, on the other hand, describes geographic space as a 

continuum of grid cell values (surfaces) that while easy to conceptualize, requires a computer to 

implement.  

 

Generally speaking, vector data is best for traditional map display and geo-query—“where is 

what,” applications that identify existing conditions and characteristics, such as “where are the 

existing gas pipelines in Colorado” (a descriptive query of existing information).  Raster data is 

best for advanced graphics and map analysis— “why, so what and what if” applications that 

analyze spatial relationships and patterns, such as “where is the best location for a new pipeline” 

(a prescriptive model deriving new information).       

       

 
 

Figure 1. A raster image is composed of thousands of numbers identifying different colors for the “pixel” 

locations in a rectangular matrix supporting visual interpretation.  

 

Most vector applications involve the extension of manual mapping and inventory procedures that 

take advantage of modern computers’ storage, speed and Internet capabilities (better ways to do 

things).  Raster applications, however, tend to involve entirely new paradigms and procedures for 

visualizing and analyzing mapped data that advances innovative science (entirely new ways to 

do things).     

 

On the advanced graphics front, the lower-left portion of figure 1 depicts an interactive Google 

Earth display of an area in northern Wyoming’s Bighorn Mountains showing local roads 

superimposed on an aerial image draped over a 3D terrain perspective.  The roads are stored in 

vector format as an interconnecting set of line features (vector).  The aerial image and elevation 

relief are stored as numbers in geo-referenced matrices (raster).      

 

The positions in a raster image matrix are referred to as “pixels,” short for picture elements.  The 

value stored at each pixel corresponds to a displayed color as a combination of red, green and 
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blue hues.  For example, the green tone for some of the pixels portraying the individual tree in 

the figure is coded as red= 116, green= 146 and blue= 24.  Your eye detects a greenish tone with 

more green than red and blue.  In the tree’s shadow toward the northwest the red, green and blue 

levels are fairly equally low (dark grey).  In a raster image the objective is to generate a visual 

graphic of a landscape for visual interpretation.   

 

A raster grid is a different type of raster format where the values indicate characteristics or 

conditions at each location in the matrix designed for quantitative map analysis (spatial analysis 

and statistics).  The elevation surface used to construct a tilted relief perspective in a Google 

Earth display is composed of thousands of matrix values indicating the undulating terrain 

gradient.  

 

 
 

Figure 2. A raster grid contains a map values for each “grid cell” identifying the characteristic/condition 

at that location supporting quantitative analysis.  

 

Figure 2 depicts a raster grid of the vegetation in the Bighorn area by assigning unique 

classification values to each of the cover types.  The upper portion of the figure depicts isolating 

just the Lodepole Pine cover type by assigning 0 to all of the other cover types and displaying the 

stored matrix values for a small portion of the project area.  While you see the assigned color in 

the grid map display (green in this example), keep in mind that the computer “sees” the stored 

matrix of map values. 

 

The lower portion of the figure 2 identifies the underlying organizational structure of geo-

registered map data.  An “analysis frame” delineates the geographic extent of the area of interest 

and in the case of raster data the size of each pixel/grid element.  In the example, the image pixel 
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size for the visual backdrop is less than a foot comprising well over four million values and the 

grid cell size for analysis is 30 meters stored as a matrix with 99 columns and 99 rows totally 

nearly 10,000 individual cell locations.   

 

For geo-referencing, the lower-left grid cell is identified as the matrix’s origin (column 1, row1) 

and is stored in decimal degrees of latitude and longitude along with other configuration 

parameters as a few header lines in the file containing the matrix of numbers.  In most instances, 

the huge matrix of numbers is compressed to minimize storage but uncompressed on-the-fly for 

display and analytical processing.    

 

 
 

Figure 3. A set of geo-registered map layers forms a “map stack” organized as thousands upon 

thousands of numbers within a common “analysis frame.”  

 

Figure 3 illustrates a broader level of organization for grid-based data.  Within this construct, 

each grid map layer in a geographically registered analysis frame forms a separate theme, such as 

roads, cover type, image and elevation.  Each point, line and polygon map feature is identified as 

a grid cell grouping having a unique value stored in implied matrix charactering a discrete spatial 

variable.  A surface gradient, on the other hand, is composed of fluctuating values that track the 

uninterrupted increases/decreases of a continuous spatial variable.   

 

The entire set of grid layers available in a database is termed a map stack.  In map analysis, the 

appropriate grid layers are retrieved, their vales map-ematically processed and the resulting 

matrix stored in the stack as a new layer— in the same manner as one solves an algebraic 

equation, except that the variables are entire grid maps composed of thousands upon thousands 

of geographically organized numbers.    
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The major advantages of grid-based maps are their inherently uncomplicated data structure and 

consistent parsing within a holistic characterization of geographic space—just the way 

computers and math/stat mindsets like it.  No sets of irregular spatial objects scattered about an 

area that are assumed to be completely uniform within their interiors… rather, continuously 

defined spatial features and gradients that better align with geographic reality and, for the most 

part, with our traditional math/stat legacy. 

 

The next section’s discussion builds on this point by extending grid maps and map analysis to “a 

universal key” for unlocking spatial relationships and patterns within standard database and 

quantitative analysis approaches and procedures.  

_____________________________ 
Author’s Notes:  For a more detailed discussion of vector and raster data types and important considerations, see Topic 18, 

“Understanding Grid-based Data” in the online book Beyond Mapping III posted at www.innovativegis.com/basis/MapAnalysis/. 

 

 

To Boldly Go Where No Map Has 
Gone Before     

(GeoWorld, October 2012) 
  (return to top of Topic) 

 

Previous sections have described a mathematical framework (dare I say a “map-ematical” 

framework?) for quantitative analysis of mapped data.  Recall that Spatial Analysis operations 

investigate the “contextual” relationships within and among maps, such as variable-width buffers 

that account for intervening conditions.  Spatial Statistics operations, on the other hand, examine 

the “numerical” relationships, such as map clustering to uncover inherent geographic patterns in 

the data.   

 

The cornerstone of these capabilities lies in the grid-based nature of the data that treats 

geographic space as continuous map surfaces composed of thousands upon thousands of cells 

with each containing data values that identify the characteristics/conditions occurring at each 

location.  This simple matrix structure provides a detailed account of the unique spatial 

distribution of each map variable and a geo-registered stack of map layers provides the foothold 

to quantitatively explore their spatial patterns and relationships.   

 

The most fundamental and ubiquitous grid form is the Latitude/Longitude coordinate system that 

enables every location on the Earth to be specified by a pair of numbers. The upper portion of 

figure 1, depicts a 2.5
0
 Lat/Lon grid forming a matrix of 73 rows by 144 columns= 10,512 cells 

in total with each cell having an area of about 18,735mi
2
.  

 

The lower portion of the figure shows that the data could be stored in Excel with each 

spreadsheet cell directly corresponding to a geographic grid cell.  In turn, additional map layers 

could be stored as separate spreadsheet pages to form a map stack for analysis.   

 

http://www.innovativegis.com/basis/MapAnalysis/
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Of course this resolution is far too coarse for most map analysis applications, but it doesn’t have 

to be.  Using the standard single precision floating point storage of Lat/Long coordinates 

expressed in decimal degrees, the precision tightens to less than half a foot anywhere in the 

world (365214 ft/degree * 0.000001= .365214 ft *12 = 4.38257 inches or 0.11132 meters).  

However, current grid-based technology limits the practical resolution to about 1m (e.g., Ikonos 

satellite images) to 10m (e.g., Google Earth) due to the massive amounts of data storage 

required.   

    

For example, to store a 10m grid for the state of Colorado it would take over two and half billion 

grid cells (26,960km²= 269,601,000,000m² / 100m² per cell= 2,696,010,000 cells).   To store the 

entire earth surface it would take nearly a trillion and a half cells (148,300,000km
2
 = 

148,000,000,000,000m
2
 / 100m² per cell= 1,483,000,000,000 cells).   

 

 
 

Figure 1. Latitude and Longitude coordinates provide a universal framework for parsing the earth’s 

surface into a standardized set of grid cells.   

 

At first these storage loads seem outrageous but with distributed cloud computing the massive 

grid can be “easily” broken into manageable mouthfuls.  A user selects an area of interest and 

data for that area is downloaded and stitched together.  For example, Google Earth responds to 

your screen interactions to nearly instantaneously download millions of pixels, allowing you to 

pan/zoom and turn on/off map layers that are just a drop in the bucket of the trillions upon 

trillions of pixels and grid data available in the cloud. 

 

Figure 2 identifies another, more practical mechanism for storage using a relational database.  In 

essence, each of the conceptual grid map spreadsheets can be converted to an interlaced format 
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with a long string of numbers forming the columns (data fields); the rows (records) identify the 

information available each of the individual grid cells that form the reference grid.    

 

 
 

Figure 2. Within a relational database, Lat/Lon forms a Universal DBMS Key for joining tables.  

 

For fairly small areas of up to a million or so cells this is an excellent way to store grid maps as 

their spatial coincidence is inherent in the organization and the robust standard set of database 

queries and processing operations is available.  Larger grids use more advanced, specialized 

mechanisms of storage to facilitate data compression and virtual paging of fully configured grid 

layers.   

 

But the move to a relational database structure is far more important than simply corralling 

mega-gulps of map values.  It provides a “Universal DBMS Key” that can link seemingly 

otherwise disparate database tables (see Authors Note).  The process is similar to a date/time 

stamp, except the “where information” provides a spatial context for joining data sets.  

Demographic records can be linked to resource records that in turn can be linked to business 

records, health records, etc— all sharing a common Lat/Lon address.   
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All that is necessary is to tag your data with its Lat/Lon coordinates (“where” it was collected) 

just as you do with the date/time (“when” it was collected) …not a problem with the ubiquitous 

availability and increasing precision of GPS that puts a real-time tool for handling detailed 

spatial data right in your pocket.  In today’s technology, most GPS-enabled smart phones are 

accurate to a few meters and specialized data collection devices precise to a few centimeters.   

 

Once your data is stamped with its “spatial key,” it can be linked to any other database table with 

spatially tagged records without the explicit storage of a fully expanded grid layer.  All of the 

spatial relationships are implicit in the relative positioning of the Lat/Lon coordinates.   

 

For example, a selection operation might be to identify of all health records jointly occurring 

within half a kilometer of locations that have high lead concentrations in the top soil.  Or, locate 

all of the customer records within five miles of my store; better yet, within a ten-minute drive 

from a store.   

 

Geotechnology is truly a mega-technology that will forever change how we perceive and process 

spatial information.  Gone are the days of manual measurements and specialized data formats 

that have driven our mapping legacy.  Lat/Lon coordinates move from cross-hairs for precise 

navigation (intersecting lines) to a continuous matrix of spaces covering the globe for consistent 

data storage (grid cells).  The recognition of a universal spatial key coupled with spatial 

analysis/statistics procedures and GPS/RS technologies provides a firm foothold “to boldly go 

where no map has gone before.” 

_____________________________ 
Author’s Note:  See the online book Beyond Mapping III posted at www.innovativegis.com/basis/MapAnalysis/, Topic 28, 

“Spatial Data Mining in Geo-Business,” section on The Universal Key for Unlocking GIS’s Full Potential (October 2011 

column).  

 

 

The Spatial Key to Seeing the Big 
Picture    

(GeoWorld, September 2013) 
  (return to top of Topic) 

 

The previous section described the standard Latitude/Longitude grid as a “Universal Spatial dB 

Key” that is comparable to the date/time tagging of records in most database systems.  With 

general availability of GPS coordinates on most data collection devices, cameras, smartphones 

and tablets, earth position can be easily stamped with each data record.  Couple that with geo-

coding by street address and most data collected today has a triplet of numbers indicating 

location (where), as well as characteristic/condition (what)—XY and Value designating “where 

is what.”   

 

Data flowing from a “spatially aware database” can be thought of as a faucet spewing data that 

meets a query (figure 1).  In turn, each value flows to the appropriate grid cell based on its 

Lat/Lon tag.  The process can be conceptualized as the “what” attributes aligning within an 

http://www.innovativegis.com/basis/MapAnalysis/
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analysis frame (matrix of numbers) that characterizes the spatial pattern/distribution inherent in a 

set of data.   

 

While the long history of quantitative data analysis focused on the numerical distribution of data, 

quantitative analysis of the spatial distribution of geospatial data provides an new frontier for 

understanding spatial patterns and relationships influencing most physical, biological, 

environmental, economic, political and cultural systems.  The recognition, development and 

application of this fresh math/stat paradigm (sort of a “map-ematics”) promises to revolutionize 

how we extract and utilize information from field collected data (see Author’s Note 1). 

 

 
Figure 1. Steps in generating a grid map layer from spatially tagged data. 

 

Converting spatially tagged data into grid maps is outlined on the right side of figure 1 as a five 

step process.  The user first identifies the “geographic extent” of an area of interest by 

interactively dragging a box on a map or by entering Lat/Lon coordinates for the boundary (Step 

1).   

 

An appropriate “cell size” for analysis is then entered as length of a side of an individual grid cell 

(Step 2).  The smaller the cell size the higher the spatial resolution affording greater detail in 

positioning but resulting in exponentially larger matrices for storage.  User judgment is applied 

to balance the precision (correct placement), accuracy (correct characterization) and 

storage/performance demands (see Author’s Note 2).  

 

In Step 3, the computer divides the lengths of the NS and EW sides of the project area extent by 

the cell size to determine the number of rows and columns of a matrix (termed the Analysis 

Frame) used to store grid layer information (map variables).  This establishes an algorithm for 

determining the Lat/Lon ranges defining each grid cell and its centroid position.  Considerations 
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and implications surrounding this technically tricky step (3D curved earth to 2D flat matrix) are 

reserved for later discussion. 

 

Based on the positioning algorithm’s calculations, each geo-tagged value flowing from the 

database can be placed in the appropriate row/column position in the analysis frame’s matrix 

(Step 4).  The processing is repeated for all of the selected dB records.  If more than one value 

“falls” into a grid cell the values are summarized on-the-fly (Step 5).      

 

Figure 2 depicts the considerations surrounding the summary of multiple data values sharing a 

single grid cell.  The condition can be conceptualized as a “shish kebab of numbers” that needs 

to be reduced to an overall value that best typifies the actual characteristic/condition at that 

location. 

 

 
 

Figure 2. Summarizing multiple data values falling in a single grid cell.    

 

The data type of the numbers determines the summary techniques available.  Most often 

quantitative values are averaged as shown in the figure but other statistical metrics can be used 

depending on the application.  Qualitative values are typically assigned the maximum or 

minimum value encountered in the string.  Binary values, such as crime occurrence, are usually 

summed to identify total count of instances at each grid location.   

 

The result of the five step procedure creates a grid map layer identifying the “discrete” spatial 

pattern of the data that is analogous to a histogram in non-spatial statistics.  In most applications, 

spatial interpolation or density analysis techniques are used to derive a continuous grid map layer 

characterizing the spatial distribution of the data which is analogous to fitting a standard normal 

curve to a histogram (see Author’s Note 3).  Once in this generalized form, most traditional 

quantitative analysis techniques (plus some spatially unique techniques) can be applied to 

investigate the spatial distribution, as well as the numerical distribution of the data. 

 

The muddling concerns in applying the Lat/Lon grid as a Universal Spatial dB Key is in 

representing curved 3D earth positions as flat 2D cells of a matrix.  Figure 3 shows the reality of 

the grid cell shape that morphs from squares to stretched rectangles to elongated trapezoids with 

north/south movement away from the equator (see Author’s Note 4).   

 

Relatively small changes in the length of a degree of “latitude parallels” occur because of polar 

flattening— earth is an oblique spheroid instead of a perfect sphere due to centrifugal forces as 

the earth spins.  However huge changes occur for “longitude meridians” as the lines converge at 

Topic30_files/image089.png


____________________________ 
From the online book Beyond Mapping III by Joseph K. Berry posted at www.innovativegis.com/basis/MapAnalysis/  
All rights reserved.  Permission to copy for educational use is granted.   
 

Page  40 

the poles— a degree of longitude is widest at the equator and gradually shrinks to zero at the 

poles. 

 

 
 

Figure 3. The area and shape of Lat/Lon grid cells varies with increasing latitude.         

 

The bottom line is that directly representing the Lat/Lon grid as a two-dimensional matrix can be 

unreliable for large project areas at the higher latitudes.  However two caveats are in play.  One 

is that projection algorithms can be applied on-the-fly to transform the curved 3D coordinates to 

a planar representation and then back to lat/Lon.   

 

The other is that for many applications involving relatively small project areas at low or mid 

latitudes, the positional precision tolerable.  The notion of “tolerable” precision is what most 

differentiates “mapping” from “map analysis.”  While neighbors and armies fight over inches in 

the placement of borders, most data analysts are more accommodating and satisfied knowing 

things are much higher (or lower) over there as compared to here—a few inches or feet (or even 

miles in some cases) misplacement doesn’t obscure the big picture of the spatial distribution and 

relationships.    

_____________________________ 
Author’s Notes: 1) See, Topic 30, “A Math/Stat Framework for Grid-based Map Analysis and Modeling;” 2) see 

Introduction, section 2, “Determining Exactly Where Is What;” 3) see Topic 2, “Spatial Interpolation Procedures 

and Assessment” and Topic 7, “Linking Data Space and Geographic Space” in the online book Beyond Mapping III  

posted at www.innovativegis.com/basis/.  4) For a detailed discussion of latitude and longitude considerations see 

www.ncgia.ucsb.edu/giscc/units/u014/u014.html in the NCGIA Core Curriculum in Geographic Information 

Science, by Anthony P. Kirvan and edited by Kenneth Foote. 

 

 

Laying the Foundation for SpatialSTEM: 
Spatial Mathematics, Map Algebra and Map Analysis  
(GeoWorld, October 2013) 

  (return to top of Topic) 

 

Mathematics in general and geometry and trigonometry in particular have long been the keystone 

to mapping—from Spatial Mathematics that enables the development of mapped data; to a 

generalized Map Algebra for expressing math/stat relationships among map variables; to a 

comprehensive Map Analysis toolbox that extends traditional quantitative data analysis 

procedures by considering the spatial distribution and interaction of mapped data layers.   

http://www.innovativegis.com/basis/
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Several years ago, Nigel Waters wrote a short synopsis on “The Most Beautiful Formulae in 

GIS” where he described the ten most useful Spatial Formulae and the ten most useful Attribute-

related Formulae chosen for their elegance, simplicity, and generality, as well as their wide 

applicability and power (see author’s note 1).  More recently, the book “Spatial Mathematics: 

Theory and Practice through Mapping” by Arlinghaus and Kerski further develops the wealth of 

enabling Spatial Mathematics equations and techniques (see author’s note 2).   

 

These and a host of similar treatises provide a comfortable conceptual springboard for STEM 

disciplines to extend traditional scalar mathematics into the spatial realm.  The digital map 

expressed as an organized set of numbers fuels this transition— today “maps are numbers first, 

pictures later.”  The result is a generalized Map Algebra (see author’s note 3) enabling a user to 

add, subtract, divide, raise to a power, root, log and even differentiate and integrate digital 

maps— all of the functionality of a pocket calculator (and then some) operating on geo-

registered stacks of digital maps.   

 

This algebraic framework provides a comprehensive toolbox of primitive mathematical 

operations transitioning traditional quantitative data analysis into Map Analysis that infuses the 

consideration of spatial patterns and relationships into the analysis.  From this perspective, the 

spatial distribution of data is as important as its numerical distribution in analyzing map 

variables.         

  

 
 

Figure 1. GIS can be viewed as both a “Technological Tool” and an “Analytical Tool.” 

 

Figure 1 provides a 40,000-foot overview of the evolving field of Geotechnology, one of the 

three mega-technologies for the 21
st
 century as identified by the U.S. Department of Labor (the 

other two are Biotechnology and Nanotechnology).  The left side of the figure depicts the 

“spatial triad” of technologies (GPS, GIS and RS) comprising Geotechnology that collects, 

stores, retrieves, processes, and displays digital mapped data.  The mapping and analysis 

capabilities of GIS can be characterized as both a “Technological Tool” involving mapping, 

display and geo-query and an “Analytical Tool” involving spatial mathematics, analysis and 

statistics.   
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As a technological tool, GIS greatly extends traditional mapping and inventory techniques 

involving laborious, inefficient and generally ineffective manual procedures employed just a few 

decades ago.  Today it is commonplace to get real-time routing directions, superimposed on an 

interactive map with a satellite image backdrop and a street view of your destination; all from a 

smartphone that rivals the computing power of a mainframe computer a few decades ago.  For 

the most part, static paper maps have given way to dynamic digital mapped data that can be 

interactively viewed and processed in radically new ways—a revolution that is simply amazing 

for anyone over thirty, yet commonplace for those who are younger.  

 

The meteoric rise in the technical expressions of Geotechnology is in large part due to its easily 

envisioned extension of its manual mapping and inventory legacies.  Database systems replaced 

the walls of file cabinets (attribute data) and digital maps replaced paper maps (spatial data).  

Linking the two data set perspectives spawned a radically new paradigm of what a map is and 

isn’t and catapulted mapping to “mega-technology” status.   

 

Is a similar canonic step and radically changed paradigm in the future for traditional quantitative 

data analysis concepts, procedures and applications?  What are the impediments holding back 

GIS as an analytical tool?  What are the inducements needed for advancing spatially-aware 

quantitative data analysis?    

 

 
 

Figure 2. Types of GIS data, users and applications. 

 

Figure 2 outlines the data, users and application approaches that is fueling this transformation.  A 

major hurdle is the historical perspective of maps as being comprised of discrete spatial objects 

(point, line and areal patterns) as depicted in the 2D vector-based map in the upper-left portion of 

the figure.  While this vector data format is comfortable and ideal for human visual 

interpretation, it lacks the spatial specificity and consistency required by advanced analysis 

procedures needed by most the STEM research and applications.   

 

Alternatively, raster data depicted in the lower-left portion of the figure provides a continuous 

and consistent data form that is preconditioned for quantitative data analysis.  A grid-based map 

surface tracks subtle spatial variations of a map variable as an uninterrupted gradient instead of 

aggregating the detailed data into discrete ranges (i.e., contour intervals).   
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In addition, the matrix structuring provides a consistent “analysis frame” for a geo-registered 

stack of map layers for a project area.  Within this grid structure the row, column locators 

implicitly carry all of the necessary spatial topology relating each grid location to the positioning 

of all other locations within a single map layer and among multiple layers in a geo-registered 

map stack.            

  

The right side of figure 2 identifies several types of GIS users.  Currently, most of the GIS 

community is comprised of Data Providers, GIS Specialists, and General Users who are 

primarily involved with the technical aspects of GIS and their vector processing expressions— 

creating, maintaining and accessing mapped data and then executing standardized processing 

routines.  These users can be thought of as “of the technology.”      

 

The Power Users, Developers and Modelers, on the other hand, are more “of the application.”  

Within this context, domain expertise identifies the scope of a problem and the map variables 

involved and then map analysis capabilities are used to uncover spatial relationships that then 

forms a spatially-aware solution.  It is in this arena that a “newly developing niche for 

SpatialSTEM” is poised to take-hold (see author’s note 4).     

 

Einstein noted that “we cannot solve our problems with the same level of thinking that created 

them” and that “the formulation of the problem is often more essential than its solution, which 

may be merely a matter of mathematical or experimental skill.”  This thinking suggests that the 

STEM disciplines need to be actively engaged and leading the search for spatially-aware 

solutions to today’s complex spatial problems.  Also, it recognizes that geospatial technologists 

need to fully recognize the quantitative nature mapped data and embrace its analytical potential, 

as well as its technical application.       

 

However when it comes to Map Analysis (grid-based Spatial Analysis and Spatial Statistics 

operations), the old adage that “they who know not, know not they know not” takes center stage 

and the status quo paradigms of science and technology continue to dominate education, research 

and application development.  As long as a conceptual chasm exists between the mapping and 

quantitative analysis communities, spatially-aware solutions to complex problems will continue 

to be mostly side-lined.     

_____________________________ 
Author’s Notes: 1) See “The Most Beautiful Formulae in GIS” by Nigel Waters (1995) posted at 

www.innovativegis.com/basis/MapAnalysis/Topic30/Beautiful_Formulae.pdf.   2) See “Spatial Mathematics: Theory 

and Practice through Mapping” by Sandra Arlinghaus and Joseph Kerski (2013, 

www.crcpress.com/product/isbn/9781466505322).  3) The concepts and procedures behind Spatial Mathematics 

was introduced by David Unwin with the University of London (Introductory Spatial Analysis, 1981, Methuen New 

York) and subsequently developed as a set-based Map Algebra for manipulating raster map layers by Dana Tomlin 

as a doctoral student at Yale University (Geographic Information Systems and Cartographic Modeling, 1990, 

Prentice-Hall, Englewood, New Jersey).  4) A twelve-part compilation of Beyond Mapping columns describing the 

math/stat framework, classification of procedures and future directions of SpatialSTEM is posted at 

www.innovativegis.com/basis/MapAnalysis/Topic30/Topic30.htm.   

 

 

http://www.innovativegis.com/basis/MapAnalysis/Topic30/Beautiful_Formulae.pdf
http://www.crcpress.com/product/isbn/9781466505322
http://www.innovativegis.com/basis/MapAnalysis/Topic30/Topic30.htm
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Recasting Map Analysis Operations 
for General Consumption    

(GeoWorld, February 2013) 
  (return to top of Topic) 

 

Earlier discussions have suggested that there is “a fundamental mathematical structure 

underlying grid-based map analysis and modeling that aligns with traditional non-spatial 

quantitative data analysis” (see Author’s Note 1).  This conceptual framework provides a 

common foothold for understanding, communicating and teaching basic concepts, procedures 

and considerations in spatial reasoning and analysis resonating with both GIS and non-GIS 

communities—a SpatialSTEM schema—that can be applied to any grid-based map analysis 

system (see Author’s Note 2).   

 

 
 

Figure 1. Grid-based map analysis operations in any GIS system, such as Spatial Analyst, can be 

reorganized into commonly understood classes of traditional quantitative data analysis.  
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For example, the top portion of figure 1 identifies the 22 map analysis “toolsets” containing over 

170 individual “tools” in the Spatial Analyst module (ArcGIS by Esri).  The organization of the 

classes of operations involves a mixture of— 
  

 Traditional math/stat procedures (Conditional, Map Algebra, Math General, Math Bitwise, 

Math Logical, Math Trigonometric, Multivariate, Reclass);  

 Extensions of traditional math/stat procedures (Distance, Interpolation, Surface);  

 Unique map analysis procedures (Density, Local, Neighborhood, Overlay, Zonal);  

 Application-specific procedures (Groundwater, Hydrology, Solar Radiation); and 

 Housekeeping tasks (Extraction, Generalization, Raster Creation). 

 

In large part, this toolset structuring is the result of the module’s development over-time 

responding to “business case” demands by clients instead of a comprehensive conceptual 

organization.  In contrast, Tomlin’s “Local, Focal, Zonal and Global” classes characterize the 

analytical operations on how the input data is obtained for processing, while my earlier 

groupings of “Reclassify, Overlay, Distance, Neighbors and Statistical” reflect the characteristics 

of the mapped data generated by the processing. 

 

However, all three of these GIS-based schemas are foreign and confusing to the vast majority of 

potential map analysis users (all STEM disciplines) as they do not align with their traditional 

quantitative data analysis experiences.  This conceptual disconnect keeps GIS on the sidelines of 

the much larger quantitative analysis communities and reinforces the idea that GIS is a “technical 

tool” (mapping and geoquery) not a full-fledged “analytical tool” (spatial analysis and statistics). 

 

The bottom portion of figure 1 identifies the two broad categories of traditional data analysis— 

Mathematics and Statistics—broken into seven major groupings that resonate with non-GIS 

communities.  All of Spatial Analysts’ 117 analytical operations (the other 53 are 

“reporting/housekeeping”) can be reorganized into the commonly recognized quantitative 

analysis categories.    

 

Figures 2 and 3 at the end of this section show my initial attempts at the reorganization (see 

Author’s Note 3). 

 

The bottom line is that the SpatialSTEM framework recasts map analysis concepts and 

procedures into a more generally understood organization.  Within this general schema, map 

analysis is recognized as a set of natural extensions to familiar non-spatial math/stat operations.  

For example—  
 

 A high school math teacher might follow a discussion of the Pythagorean Theorem with 

“…but what if there is an impassible barrier between the two points?  The distance is no 

longer a straight line but some sort of a ‘bendy-twisty’ route around the barrier.  How would 

you calculate the not-necessarily-straight distance?  The ‘Splash Algorithm’ does that by…” 

(you know the rest of the story). 
 

 Or a statistics instructor might follow a lecture on the derivation of the Standard Normal 

Curve for characterizing the ‘numerical distribution’ of a data set with “…but what about the 

‘spatial distribution’ of the data?  Is data always uniform or randomly distributed in 
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geographic space?  How could you characterize/visualize the spatial distribution?  ‘Spatial 

Interpolation’ does that by…” (you know the rest of the story).   
 

 Or an environmental science teacher might follow a lecture on the use of riparian buffers 

with “…but are all ‘buffer-feet the same’?  What about the slope of the surrounding terrain?  

…and the type of soil?  …and the density of vegetation?  Wouldn’t an area along a stream 

that is steep with an unstable soil and minimal vegetation require a much larger setback than 

an area that is flat with stable soils and dense vegetation?  How could you create a variable-

width buffer around streams that considers the intervening erosion conditions?  A simple 

‘sediment loading model does that by…” (you know the rest of the story).    
 

 Or a crop scientist who historically calculated the increase (decrease) in yield over a previous 

year for a new genetic variety as the percent change in the total “weigh-wagon” records for an 

entire trial field.  But with GPS-enabled yield maps that automatically collect on-the-fly yield 

measurements as a harvester moves through a field, a detailed map of the percent change can 

be generated by spatially evaluating the standard algebraic equation by… (you know the rest 

of the story). 
 

 Or a sales manager can use ‘address geo-coding’ to sprinkle sales data onto a grid map and 

then compute ‘roving window’ totals to generate a sales density surface showing where sales 

are high (or low) throughout each of several sales territories.  The map analysis can be 

extended to calculate areas of unusually high (or low) sales by identifying locations that are 

more than one standard deviation above (or below) the average sales density… (you know the 

rest of the story).   

 

Dovetailing map analysis with traditional quantitative analysis thinking moves GIS from a 

“specialty discipline down the hall and to the right” for mapping and geoquery, to an integrated 

and active role in the spatial reasoning needed by tomorrow’s scientists, technologists, decision-

makers and other professionals in solving increasing complex and knurly real-world problems.  

From this perspective, “thinking with maps” becomes a true fabric of society thus fulfilling 

GIS’s mega-technology promise. 
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Figure 2. Reorganization of Spatial Analyst’s analytical “tools” into traditional mathematical 

categories.  
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Figure 3. Reorganization of Spatial Analyst’s analytical “tools” into traditional statistical categories. 

 

_____________________________ 
Author’s Note: 1) see the Chronological Listing of Beyond Mapping columns posted at 

www.innovativegis.com/basis/MapAnalysis/ChronList/ChronologicalListing.htm; 2) for numerous links to papers, PowerPoint 

slide sets and other materials describing the SpatialSTEM framework, see www.innovativegis.com/Basis/Courses/SpatialSTEM/; 

3) at the same SpatialSTEM posting, see the white paper entitled “Math/Stat Classification of Spatial Analysis and Spatial 

Statistics Tools (Spatial Analyst by Esri)” more detailed description of the recasting of Spatial Analyst’s operations by 

traditional non-spatial mathematics and statistics categories.   
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